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Abstract

Selective rotation pulses cause magnetization within a given frequency range (or slice) to undergo a specified rotation, about a spec-
ified axis. Magnetization outside this slice remains unaffected if it is initially along the z axis. It has previously been shown that the design
of such pulses can be reduced to the design of selective ‘‘point-to-point’’ pulses, which rotate magnetization within the slice from the y

axis. By decomposing the point-to-point pulses into two sub-pulses, it is shown that an inverse scattering algorithm for selective pulse
design can be used to calculate selective rotation pulses with any desired spinor response, subject to the constraint that the second spinor
component have constant phase across the slice. The design of selective refocusing pulses can be treated specially, requiring the calcu-
lation, by the same inverse scattering algorithm, of a single sub-pulse.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Selective rotation pulses are an interesting class of pulses
which effect a given rotation of magnetization vectors with-
in a frequency band, irrespective of their initial orienta-
tions. For example, a 90y� selective rotation pulse would
rotate all magnetization within a given band by 90 degrees
about the y axis. Within this frequency band, magnetiza-
tion initially aligned with the z axis would end up aligned
with the x axis. Magnetization initially aligned with the x

axis would end up along the �z axis. Magnetization out-
side this frequency band would not receive this rotation:
it is usual to require that it be rotated only about the z axis.

Selective rotation pulses are known by a variety of
names, including ‘‘type A’’ [1], ‘‘R-type’’ [2],1 ‘‘general
rotation’’, or ‘‘universal’’ (UR) pulses [3,4]. Selective rota-
tion pulses that provide a uniform rotation within the
selected band (and rotation only about the z axis outside)
are of particular interest, as they are the equivalent of hard
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1 More accurately, in the notation of [1], type A within the selected slice,
and type B2 outside (or [2] R-type within, M-type outside).
pulses within this band. They can therefore be used to
achieve spatially selective coherence transfer [5] and be
used to implement qubit manipulation in NMR and optical
quantum computers [6,7].

Selective rotation pulses appear to be much more diffi-
cult to calculate than usual selective pulses, which are
required to rotate magnetization, within a band of frequen-
cies, from a fixed point [normally (0,0,1)] to some final
state, as a function of frequency offset. These latter pulses
will be referred to here as selective point-to-point (PP) [8]
pulses [as for selective rotation pulses, ‘‘selective’’ should
be taken to mean that outside of a given frequency band,
magnetization is rotated only about z, so initial magnetiza-
tion (0, 0,1) remains at (0, 0,1)].

Indeed it has not been clear whether it is possible to
obtain arbitrarily accurate selective rotation pulses, in con-
trast to selective PP pulses which can be calculated exactly
using the (equivalent) methods of inverse scattering [9],
Schur-type iteration [10–12] or the Shinnar-Le Roux algo-
rithm [13,14].

This question is answered in this paper. It is shown how
inverse scattering theory can be used to calculate arbitrarily
specified selective rotation pulses (to within a constraint
that will be described).
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2 Hence, the rotation axis must always be in the x–z plane. It is possible
to rotate this plane by using the phase-shifted pulse ðP � �P trÞei/ [8].

3 Using the fact that if the spinor response of Q at frequency offset x3 is
(aQ(x3),bQ(x3)), the spinor response of �Qtr is ðaI

Q ð�x3Þ;�bQð�x3ÞÞ.
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2. Theory

2.1. Reducing the selective rotation problem to a

point-to-point problem

A key result that enables the exact calculation of selec-
tive rotation pulses is from [8]. It is convenient to express
this result in terms of spinors, which provide a simple
way of representing rotations. In particular, a rotation R

of angle h about the (unit) vector (nx,ny,nz) can be repre-
sented by the 2 · 2 matrix [4,15,16]

U ¼
cosðh=2Þ � inz sinðh=2Þ �i sinðh=2Þðnx � inyÞ
�i sinðh=2Þðnx þ inyÞ cosðh=2Þ þ inz sinðh=2Þ

� �
:

ð1Þ

It is sufficient to write down just the components in the first
column of U (since the second column can be deduced from
it):

u ¼ ðcosðh=2Þ � inz sinðh=2Þ;�i sinðh=2Þðnx þ inyÞÞ ð2Þ

and u is the spinor representing this rotation.
Furthermore, let v = (vx,vy,vz) be a vector. The effect of

rotating v by R to v 0 is determined by evaluating

V 0 ¼ UVU�1; ð3Þ

where

V ¼
vz vx � ivy

vx þ ivy �vz

� �
ð4Þ

and U�1 (the inverse of U) is obtained by substituting h by
�h in Eq. (1). Then the rotated vector v 0 can be deduced,
since V 0 must equal

V 0 ¼
v0z v0x � iv0y

v0x þ iv0y �v0z

 !
: ð5Þ

Consider the special case when v = (0, 1,0). Write u = (a,b),
and hence

U ¼ a �bI

b aI

 !
; U�1 ¼ aI bI

�b a

 !
; ð6Þ

where q denotes the complex conjugate. Then Eqs. (3)–(5)
imply that

v0x þ iv0y ¼ iðaI2 þ b2Þ; v0z ¼ iðab� aIbIÞ: ð7Þ

Now suppose P(t) is a pulse that rotates a magnetization
vector by the rotation R above (i.e., the rotation can be
represented by u or U above). Using the notation of [8],
where tr denotes time-reversed and – denotes phase-re-
versed, let �P tr be the time- and phase-reversed pulse
Pq(�t). Then [1] the response of �P tr can be represented
by a matrix �U tr, or by an equivalent spinor �utr, where for
example,

�utr ¼ ða;�bIÞ: ð8Þ

The effect of pulse P � �P tr (i.e., �P tr followed by P) is then
S ¼ U �U tr ¼ a2 þ bI2
ab� aIbI

ab� aIbI aI2 þ b2

 !
; ð9Þ

i.e., it can be represented by the spinor

s ¼ ða2 þ bI2
; ab� aIbIÞ: ð10Þ

Comparing Eqs. (7) and (10), it can be concluded that if P

rotates a magnetization vector initially at (0, 1,0) to
(mx,my,mz), then the composite pulse P � �P tr has spinor
response

s ¼ ðimI;�imzÞ; ð11Þ
where m = mx + imy. It is therefore possible to design a
selective rotation pulse with any desired spinor response
as a function of frequency offset x3,

sdesðx3Þ ¼ ðadesðx3Þ; bdesðx3ÞÞ ð12Þ
(with the constraint that the second component of the spin-
or is always imaginary2) provided that it is possible to de-
sign selective PP pulses that rotate magnetization within
the selected slice from (0, 1,0) to (mx,my,mz) where

iðmx � imyÞ ¼ ades; and � imz ¼ bdes: ð13Þ
This reduction of the selective rotation problem to a PP
problem was the key result of [8]. How to analytically solve
the PP problem has not previously been described, and this
is now done.

2.2. Solving the point-to-point problem

2.2.1. Pulses Q and E

The required magnetization response (13) of pulse P can
be accomplished by requiring that pulse P must (inside the
slice) (a) rotate initial magnetization (0,1,0) to (0,0,1) and
then (b) rotate magnetization (0,0,1) to (mx,my,mz) of Eq.
(13). Outside the slice, it is sufficient to require that magne-
tization (0, 0,1) remain at (0,0,1) after both steps.

Processes (a) and (b) can be achieved by appropriately
chosen pulses.

Let Q be a selective PP pulse that rotates magnetization
(0,0,1) to (0,1,0) within the selected slice. It is known [8]
(see also [17]) that the pulse �Q(�t) = �Qtr will rotate
magnetization (0,1,0) to (0, 0,1) within the selected slice,
provided the slice is symmetrically placed about x3 = 0.
It is easy to verify this with the spinor formalism of Section
2.1,3 and also to verify that outside the slice, magnetization
(0,0,1) will stay at (0,0,1) after pulse �Qtr.

Pulse P can therefore be constructed as pulse �Qtr fol-
lowed by the selective excitation pulse E that (within the
selected slice) rotates magnetization (0,0,1) to (mx,my,mz)
satisfying Eq. (13). Then P = E Æ �Qtr has properties (a),
(b) listed above.
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The selective rotation pulse, can then be written down:

P � �P tr ¼ E � �Qtr � ��Q � �Etr; ð14Þ

and this will induce a selective rotation given by the spinor
of Eqs. (12) and (13). In fact, usually the Q and E pulses
can be ‘‘spliced’’ together over some interval, as illustrated
in an example below.
4 It is convenient later to consider Eq. (21) where / „ p/4, hence this
form with general / is maintained.
2.2.2. Calculating pulses Q and E

Selective PP pulses Q and E used to construct the selec-
tive rotation pulses can be calculated with inverse scatter-
ing theory. The method described in [9] is fairly compact
and simple. It is applicable when the initial magnetization
is (0,0,1) for all frequency offsets, as is the case for pulses
Q and E.

The desired magnetization response ðmdes
x ;mdes

y ;mdes
z Þ of

the selective PP pulse needs to be expressed as the stereo-
graphic projection

Cdes ¼
mdes

x þ imdes
y

1þ mdes
z

: ð15Þ

Furthermore, Cdes needs to be a rational polynomial in fre-
quency offset x3, i.e., have the form

Cdesðx3Þ ¼ a

Qm�1
j¼0 x3 � zjQn�1
j¼0 x3 � pj

; ð16Þ

where n > m (which ensures that Cdes fi 0 as x3 fi ±1).
Functions that are not in rational polynomial form can
usually be approximated as such to arbitrarily high preci-
sion using, for example, Padé or minimax approximation
[18].

Let fj, j = 0, . . . ,2n � 1, solve

CdesðfjÞCI

desðf
I

j Þ þ 1 ¼ 0; ð17Þ

noting that if fj is a solution, so is fI

j . Then solve the linear
matrix equation

P2n�1

j¼0

e�ði=2Þfj t

fj�pk
fj ¼ 0

i
P2n�1

j¼0

eði=2Þfj t

fj�pI

k
CdesðfjÞfj ¼ 1

9>>>=
>>>;

k ¼ 0; . . . ; n� 1; ð18Þ

for fj(t), j = 0, . . . ,2n � 1. Finally, the pulse (in units of
angular frequency) with response Cdes at t = 0 is

xðtÞ ¼ �2i
X2n�1

j¼0

fjðtÞe�ði=2Þfjt ð19Þ

assuming without loss of generality that the pulse runs
from t = �1 to t = 0.

For pulse Q, the stereographic projection of its desired
magnetization response is [Eq. (15)]

CQ ¼
i for jx3j < 1 rad=ms;

0 otherwise;

�
ð20Þ
assuming, without loss of generality, that the slice runs
over the interval �1 < x3 < 1 rad/ms (i.e., between
±160 Hz).

CQ can be approximated by the Butterworth function

Cdes ¼
i tan /
1þ x2r

3

¼ i tan /
1Q2r�1

j¼0 x3 � pj

; ð21Þ

where / = p/4 (i.e., tan/ = 1), and pj = exp[ip/(2r)]exp(ijp/
r) are the 2rth roots of �1.4 Here r is a positive integer. The
greater the value of r, the closer the Butterworth function
gets to the desired response. Other functions, such as
Chebyshev rational polynomials can also be used to
approximate CQ [19].

To calculate the fj, note that Cdes of Eq. (21) satisfies

Cdesðx3Þ ¼ �CI

desðxI

3 Þ ð22Þ

and so Eq. (17) becomes Cdes(fj) = ±1. Let fþj (j =
0, . . ., 2r � 1) solve

Cdesðfþj Þ ¼ 1: ð23Þ

Then f�j � fþj
I

solves Cdesðf�j Þ ¼ �1. Therefore, the set {fj}
equals

ffjg ¼ ffþ0 ; . . . ; fþ2r�1; f
þ
0

I

; . . . ; fþ2r�1

Ig: ð24Þ

For Cdes of Eq. (21),

ffjg ¼fðsec /Þ1=ð2rÞeiðp�/Þ=ð2rÞeikp=r; k ¼ 0; . . . ; 2r � 1;

ðsec /Þ1=ð2rÞe�iðp�/Þ=ð2rÞeikp=r; k ¼ 0; . . . ; 2r � 1g: ð25Þ

Once the pj and fj are known, Eq. (18) can be solved to
evaluate functions fj(t) over a range of values of t (with
t < 0), and hence the RF pulse Q can be calculated (19).
In general, these steps must be performed numerically,
although a closed-form expression does exist when r = 1
(see Example 4.1 below).
3. Refocusing pulses

The method of Section 2 can be used to design selective
rotation pulses with arbitrarily specified spinor response
inside the selected slice (to within the constraint described).
Such rotation pulses can be decomposed into four sub-
pulses: E, �Qtr, ��Q, and �Etr. However, the special (and
important) case of designing selective refocusing pulses
can be solved by a different method, which requires only
two sub-pulses.

A selective refocusing pulse should rotate all magnetiza-
tion within a slice by 180� about a fixed axis in the trans-
verse plane (which can be chosen to be the x axis without
loss of generality). Outside the slice, magnetization should
be rotated only about the z axis. Then Eq. (2) shows that
the desired spinor response has second component
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b ¼
�i inside the slice

0 outside:

�
ð26Þ

It is not necessary to specify the first spinor component, a.
The spinor components always satisfy jaj2 + jbj2 = 1, and
therefore if b is chosen as in (26), then a automatically
has the form that will give the desired spinor response. This
extra freedom over the general case, i.e., the fact that only b
needs to be specified, allows refocusing pulses to be calcu-
lated more easily than general selective rotation pulses.

Suppose pulse R is a PP pulse that, given initial magne-
tization (0, 0,1), produces a magnetization response
(mx,my,mz) such that the stereographic projection
C = (mx + imy)/(1 + mz) has the form

C ¼ B
xr

3 þ iB
; ð27Þ

where r > 0 is an integer, and B is a polynomial in x3 of or-
der r � 1. Then the spinor response of R followed by
�Rtr ¼ RIð�tÞ has second component [20]

b ¼ C� CI

1þ jCj2
: ð28Þ

Substituting Eq. (27) into this expression gives (assuming
x3 is real)

b ¼ �i
2jBj2 þ ixr

3ðB� BIÞ
x2r

3 þ 2jBj2 þ ixr
3ðB� BIÞ

: ð29Þ

Therefore, if B is chosen such that

2jBj2 þ ixr
3ðB� BIÞ ¼ 1; ð30Þ

then

b ¼ �i

1þ x2r
3

: ð31Þ

Similarly to Eqs. (20) and (21), this provides a Butterworth
approximation to the desired b response (26), assuming the
slice runs over the interval �1 < x3 < 1 rad/ms.

Finding polynomials B that satisfy (30) is fairly straight-
forward: see examples 4.3 and 4.4. Given B, the pulse R

with stereographic projection (27) can be found via the
algorithm described in Section 2.2.2, and then the refocus-
ing pulse is �Rtr � R.
5 In general, for a h-selective rotation pulse, / should equal (p � h)/4 for
pulse E.
4. Examples

4.1. 90x� selective rotation (closed-form example, r = 1)

Selective rotation pulses are commonly required to
rotate all magnetization within the selected slice by 90�
about the x axis.

Therefore [Eq. (2) with h = p/2 and (nx,ny,nz) = (1,0,0)]
the desired spinor response of the selective rotation pulse is

sdesðx3Þ ¼ ð1=
ffiffiffi
2
p

;�i=
ffiffiffi
2
p
Þ ð32Þ
within the selected slice (assumed as in Section 2.2.2 to run
over the interval �1 < x3 < 1 rad/ms).

Eqs. (11)–(13) then show that we need to find the selec-
tive pulse P that rotates magnetization in the selected slice
from (0,1,0) to (mx,my,mz), where

iðmx � imyÞ ¼ ades ¼ 1=
ffiffiffi
2
p

; �imz ¼ bdes ¼ �i=
ffiffiffi
2
p

; ð33Þ

i.e.,

ðmx;my ;mzÞ ¼ ð0; 1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þ: ð34Þ

From Section 2.2.1, finding pulse P is reduced to finding
pulse Q that rotates magnetization within the selected slice
from (0, 0,1) to (0,1,0) and finding pulse E that rotates
magnetization in the slice from (0,0,1) to (mx,my,mz) of
Eq. (34).

Pulse Q can be calculated by following the steps in Sec-
tion 2.2.2. Assume that a Butterworth function (21) of
order 2r is used to approximate CQ [ Eq. (20)]. The param-
eter r would usually be taken as large as possible (as this
improves the approximation). The case r = 1 is of interest,
however, as a closed-form expression for the pulse can then
be found. It is (in units of rad/ms)

QðtÞ ¼
�4ai sech ait sin art þ ai

ar
cos art tanh ait

h i
1þ ai

ar
cos art sech ait

h i2
; ð35Þ

for t < 0, where ar and ai are the real and imaginary parts of

a ¼ ie�i/=2
ffiffiffiffiffiffiffiffiffiffiffi
sec /

p
; ð36Þ

with / the same parameter as in Eq. (21), i.e., / = p/4.
Pulse E can be found by noting that its desired response,

written as a stereographic projection, is [Eqs. (15), (34)]

CE ¼
i=
ffiffi
2
p

1þ1=
ffiffi
2
p ¼ i tan p

8
for jx3j < 1

0 otherwise:

(
ð37Þ

Just as for CQ, this can be approximated by the Butter-
worth function of Eq. (21), but now with / = p/8. There-
fore, if again r is chosen to equal 1, the pulse E has
exactly the same form as Q in Eqs. (35), (36) but with /
= p/8.5

The selective rotation pulse is then [Eq. (14)]

E � �Qtr � ��Q � �Etr; ð38Þ

and this is shown in Fig. 1. Since pulses calculated by the
method of Section 2.2.2 are always (semi-)infinitely long
(i.e., in general, they can be non-zero for all t < 0), the puls-
es Q and E had to be truncated, i.e., set to zero for t < �T
before joining together according to (38).

The time T was chosen equal to 10 ms, but could be cho-
sen shorter if it was necessary to reduce the total pulse
duration. Another strategy to reduce the pulse duration is
to splice the pulses together, i.e., instead of playing out
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Fig. 2. Selective rotation pulse of Fig. 1, but the sub-pulses �Etr and ��Q
have been spliced together over their whole durations (similarly for �Qtr

and E).
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Fig. 1. Selective rotation pulse of Example 4.1, designed to produce a 90x�
rotation of magnetization within the slice �1 < x3 < 1 rad/ms (i.e.,
between ±160 Hz). The individual components of the pulse (�Etr etc.) are
indicated.
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pulse �Qtr and then E, pulse E starts before the end of
�Qtr: where they overlap, the sum of the two pulses is used.
The same splicing would need to be done to �Etr and ��Q to
maintain the pulse symmetry.

In this example, it is possible to splice the pulses together
over their whole durations, giving rise to the selective rota-
tion pulse of Fig. 2.

The spinor response to the spliced pulse of Fig. 2 was
calculated6 over the slice �1 < x3 < 1 rad/ms, and com-
pared to the desired response [Eq. (32)].

Outside this slice, the magnetization response to the
pulse was calculated (assuming an initial magnetization
along the z axis), and compared to the desired value (which
is that the magnetization remains along the z axis). The
magnetization response was not calculated inside the slice
as no assumptions were made as to the initial magnetiza-
tion of any spins inside the slice. The spinor response with-
in the slice provides more information than the
magnetization response, since the latter requires knowledge
of the initial magnetization of spins, whereas the former
does not.

Fig. 3 shows the spinor and magnetization responses to
this pulse, together with the desired values (they are similar
to the responses to the unspliced pulse of Fig. 1). Although
the pulse is very easy to calculate (its sub-pulses have been
6 The spinor responses to all the pulses in these examples were calculated
by numerically integrating the spinor equation of motion [12] over the
given range of frequency offsets.
written down in closed-form), the responses are less than
ideal. The next example illustrates the improvement that
follows choosing a larger value of r.

4.2. 90x� selective rotation (r = 6)

When r > 1 in Eq. (21), it is easier to solve Eq. (18)
numerically over a set of t values than to attempt to find
a closed-form solution. Assuming the same desired spinor
response [Eq. (32)] as in the previous example, and the
same Butterworth approximation (21), this was done for
r = 6, and with / = p/4 to give the pulse Q and / = p/8
to give the pulse E.

The (unspliced) pulse, with each sub-pulse truncated to
a duration T = 45 ms, is shown in Fig. 4. The spinor
response to this pulse within the slice �1 < x3 < 1 rad/ms
was calculated, together with the mz response outside the
slice (assuming magnetization initially along the z axis).
These responses are shown in Fig. 5. They are compared
with the desired values, still given by Eq. (32) inside the
slice, and mz = 1 outside the slice.

Increasing r improves the quality of the response, but at
a cost of increased pulse duration. As in the previous exam-
ple, reducing T or splicing (overlapping �Qtr and E by T/2,
and similarly for �Etr and ��Q, works well) could be used, or
an optimized choice of rational polynomial could be used
instead of the Butterworth function of Eq. (21), if the over-
all pulse duration was excessive.

4.3. 180x� selective rotation (r = 1)

As described in Section 3, selective refocusing pulses
whose spinor response has second component

b ¼ �i

1þ x2r
3

ð39Þ

can be calculated by first solving the polynomial equation
Eq. (30),

2jBj2 þ ixr
3ðB� BIÞ ¼ 1; ð40Þ

where B is a polynomial in x3 of order r � 1. The equation
must be true for all x3, and hence each coefficient of x3 can
be examined separately.

For r = 1, B is just a constant. This yields the equations

2jBj2 ¼ 1 and B ¼ BI: ð41Þ

Therefore

B ¼ �1=
ffiffiffi
2
p

ð42Þ

and so the desired stereographic projection for pulse R is
[Eq. (27)]

C ¼ �1=
ffiffiffi
2
p

x3 � i=
ffiffiffi
2
p : ð43Þ

There are therefore two possible choices of C. It can be
made unique by insisting that it has no poles in the upper
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Fig. 4. Selective rotation pulse with r = 6 of Example 4.2, designed to
produce a 90x� rotation of magnetization within the slice �1 < x3 < 1 rad/
ms. The individual components of the pulse (�Etr etc.) are indicated.
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Fig. 3. Response to selective rotation pulse of Fig. 2. (i,ii) The spinor response s = (a,b) in the slice �1 < x3 < 1 rad/ms is shown. The real and imaginary
parts of a are shown in (i), together with their desired values [1=

ffiffiffi
2
p

and 0 from Eq. (32)] shown as dashed lines. The imaginary part of b together with its
desired value (�1=

ffiffiffi
2
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) are shown in (ii). The real part of b must be identically zero due to the symmetry of the pulse. (iii) The mz response outside the slice,
assuming initial magnetization (0,0,1) is shown. The desired mz is shown with a dashed line.
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Fig. 5. Spinor response (a,b) inside the slice �1 < x3 < 1 rad/ms, and mz respon
responses together with the target responses are shown in the same way as in
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half complex plane. This is a good choice, as it results in the
pulse with the minimum total energy [19]. This gives, in this
case,

C ¼ 1=
ffiffiffi
2
p

x3 þ i=
ffiffiffi
2
p : ð44Þ
Using the steps described in Section 2.2.2, with a ¼ 1=
ffiffiffi
2
p

,
m = 0, n = 1, and p0 ¼ �i=

ffiffiffi
2
p

in Eq. (16), pulse R is

RðtÞ ¼ 2ffiffiffi
2
p

cosh t � sinh t
for t < 0: ð45Þ
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se outside the slice for the selective rotation pulse of Fig. 4. The calculated
Fig. 3.
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Fig. 7. (i) Selective refocusing pulse of Example 4.4, whose spinor
response has second component b given by Eq. (48). (ii) Numerically
calculated imaginary part of b for this pulse, with the ideal form of Im b

shown as a dashed line.

D.E. Rourke, C.O. Bretschneider / Journal of Magnetic Resonance 186 (2007) 123–130 129
Recalling that the refocusing pulse is constructed out of R

followed by Rq(�t), then

xðtÞ ¼ 2ffiffiffi
2
p

cosh jtj þ sinh jtj
ð46Þ

is an approximate selective refocusing pulse with

b ¼ �i

1þ x2
3

: ð47Þ

Fig. 6 shows x(t) of Eq. (46) and the (numerically calculat-
ed) form of the imaginary part of b. Comparing the calcu-
lated response to the ideal response for a refocusing pulse,
it is clear that most applications would benefit from choos-
ing a larger value of r, as in the next example.

4.4. 180x� selective rotation (r = 6)

To find the selective refocusing pulse with response

b ¼ �i

1þ x12
3

: ð48Þ

the polynomial equation

2jBj2 þ ix6
3ðB� BIÞ ¼ 1; ð49Þ

where B is a polynomial in x3 of order 5, must be solved.
Writing

B ¼ B0 þ B1x3 þ B2x
2
3 þ � � � þ B5x

5
3; ð50Þ

substituting into Eq. (49), and solving the resultant equa-
tion for each coefficient of x3, 64 possible choices of B

can be found. Just as in the previous example, there is a un-
ique choice of B such that C ¼ B=ðx6

3 þ iBÞ has poles only
in the lower half plane (as before, this choice corresponds
to the minimum energy pulse). It is (50) with

B0 ¼
iffiffiffi
2
p ;B1 ¼ 25=12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
pq

;B2 ¼ �i21=3ð2þ
ffiffiffi
3
p
Þ;

B3 ¼�
ffiffiffi
3
p

21=4
ð2þ

ffiffiffi
3
p
Þ;B4 ¼ i21=6ð2þ

ffiffiffi
3
p
Þ;

B5 ¼21=12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
pq

: ð51Þ

In general, for b ¼ �i=ð1þ x2r
3 Þ, there are 2r possible

choices of B ¼ B0 þ B1x3 þ � � � þ Br�1xr�1
3 that satisfy
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Fig. 6. (i) Selective refocusing pulse, Eq. (46), of Example 4.3, whose
spinor response has second component b given by Eq. (47). (ii)
Numerically calculated imaginary part of b for this pulse. The ideal form
of Im b for a refocusing pulse [from Eq. (26)] is shown as a dashed line.
The real part of b must be zero from the symmetry of the pulse.
Eq. (30). There is however only one choice of B such that
C has poles all in the lower half plane, and this corresponds to
the minimum energy pulse (which is purely real).7 For even
(odd) r, B0,B2, . . . are imaginary (real), and B1,B3,. . . are
real (imaginary). For r > 6, it is difficult to find exact values
for the Bj, but they can easily be found numerically.

For the Bj coefficients of (51), C was obtained [Eq. (27)],
and the algorithm of Section 2.2.2 used to calculate the
(real) pulse R(t) for t < 0. As in the previous example, the
refocusing pulse is then x(t) = R(t) for t < 0 and
x(t) = Rq(�t) = R(�t) for t > 0.

Fig. 7 shows the refocusing pulse, and the numerically
calculated response Im b. As with the 90x� examples,
increasing r brings the response close to the ideal response,
but at a cost of increased pulse duration and amplitude.

5. Conclusion

Selective rotation pulses can be calculated using inverse
scattering methods of pulse design. The desired response is
most conveniently specified by a desired spinor response
sdes = (ades,bdes) inside the selected frequency band, which
is related to the desired flip angle h and rotation axis
(nx,ny,nz) via Eq. (2). It is assumed that outside the selected
band, the desired response is that magnetization initially
aligned along the z axis [i.e., mi = (0, 0,1)], will still be
aligned along this axis after the pulse [i.e., mf = (0, 0,1)].

The only constraint on sdes is that bdes must have a con-
stant phase throughout the slice. Given this constraint, and
assuming without loss of generality that bdes is purely imag-
inary, the problem is reduced to finding a selective pulse P

with magnetization response Eq. (13), assuming an initial
magnetization (0,1,0), for all frequency offsets x3 in the
slice. Finding P can then be reduced to finding pulses Q

and E, where these are both standard selective (point to
point) pulses, selectively exciting magnetization from
(0,0,1) to (0,1,0) and the (mx,my,mz) of Eq. (13),
respectively.

Section 2.2.2 summarises an algorithm for calculating
pulses Q and E, which rely on writing their desired magne-
tization responses as stereographic projections in rational
polynomial form.
7 These minimum energy pulses can also be found using the inverse
scattering method described in [21].
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Pulses Q and E can then be used to construct a selective
rotation pulse by: (i) truncating each to a duration T (so
that each is defined only for �T < t < 0), (ii) creating the
sequence E � �Qtr � ��Q � �Etr (where A Æ B means pulse B fol-
lowed by pulse A).

Selective refocusing pulses (i.e., when h = 180�) can be
designed using a different procedure that only requires a
single sub-pulse, R, to be found. Again, this pulse can be
calculated using the method of Section 2.2.2, since it is a
standard point to point excitation pulse. The refocusing
pulse is then simply �Rtr � R.

Selective rotation pulses can therefore be calculated with
response as close as desired to the target response. Howev-
er, as the accuracy of the rational polynomials used in the
calculation of the pulses is increased, so will the pulse dura-
tion and amplitude.

How unique these solutions are is currently unknown.
For refocusing pulses with desired spinor response
described by Eq. (31), there are 2r possible pulses (but
a unique minimum energy pulse). For other values of
h, the situation is less clear. For example, a 0�-selective
rotation pulse could be obtained by: (i) using no pulse
at all or (ii) the pulse sequence Q � �Qtr � ��Q � �Qtr. A
general selective rotation pulse could have a 0�-selective
rotation pulse added before or after it without changing
its response.

It is not clear whether this is the only source of non-
uniqueness for h-selective rotation pulses, and hence
whether the form (14) is always the shortest such pulse
(for h„0,h„p).
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